Magnetic Moment and Effective Magnetic Moment

This is a fundamental concept in magnetochemistry which shows correlation between the magnetic moment (μ) and the effective magnetic moment (μ eff).

1. Magnetic Moment (μ)

The **magnetic moment** of a substance arises mainly due to the **unpaired electrons** present in its atoms or ions.

- Electrons have **spin** and **orbital** angular momentum.
- Both contribute to the total magnetic moment.

2. Spin-Only Magnetic Moment (µ_s)

For most **transition metal ions**, especially those in complexes, the orbital contribution is often **quenched** (i.e., negligible).

Hence, the **spin-only** formula is used:

$$\mu_s = \sqrt{n(n+2)}$$
 BM

where:

- n= number of unpaired electrons
- BM = Bohr Magneton

3. Effective Magnetic Moment (µ_eff)

The **effective magnetic moment** is the *experimentally observed* magnetic moment, which includes both spin and orbital contributions:

$$\mu_{\text{eff}} = \sqrt{4S(S+1) + L(L+1)} \; \mu_B$$

where:

- $S = \text{total spin quantum number } (\frac{1}{2} \times \text{number of unpaired electrons})$
- L= total orbital angular momentum quantum number

In many coordination compounds (especially **octahedral and tetrahedral**), orbital contribution is small, so:

$$\mu_{\rm eff} \approx \mu_{\rm s} = \sqrt{n(n+2)} \ \mu_{\rm B}$$

4. Correlation Between μ and μ_eff

Case Type of Ion Dominant Contribution Correlation

3d transition metal ions Spin only (orbital $\mu_eff \approx \mu_s = \sqrt{n(n+2)}$

4d and 5d transition Both spin and orbital $\mu_eff > \mu_s$ metal ions

 $Lanthanides \qquad \qquad (4f\ Orbital \qquad contribution\ \mu_eff \neq \mu_s\ (must\ include\ L$

elements) significant and S)

5. Example Calculations

Ion Configuration n μ_eff (BM) (theoretical)

$Ti^{3+}(3d^{1})$	$3d^1$	1 1.73
$V^{3+}(3d^2)$	$3d^2$	2 2.83
$Cr^{3+}(3d^3)$	$3d^3$	3 3.87
$Mn^{2+} (3d^5)$	3d ⁵	5 5.92
$Fe^{2+}(3d^6)$	$3d^6$	4 4.90

6. Measure Magnetic Susceptibility (χ):

Using a device like a SQUID magnetometer or a Gouy balance, scientists measure how much a sample is magnetized in an applied magnetic field. This gives the molar magnetic susceptibility (χm) .

7. Experimental Determination

The effective magnetic moment (μ _eff) can be obtained experimentally from magnetic susceptibility (χ):

$$\mu_{\rm eff} = 2.828 \sqrt{\chi_M T}$$

where:

- χ_M = molar magnetic susceptibility
- T= temperature (K)

Summary of Correlation

If orbital contribution negligible: $\mu_{\text{eff}} = \mu_s = \sqrt{n(n+2)}$ BM If orbital contribution present: $\mu_{\text{eff}} > \mu_s$